手机版 客户端

在纳米尺度“操控”光传输

  在纳米尺度“操控”光传输。 光电集成芯片可以最大限度发挥光子传输、电子计算的优势,是获取跨越式信息处理能力的关键器件。但是由于光学衍射极限的限制,微米尺寸的光传输模块难以与纳米尺寸的电计算模块联接融合,严重制约光电芯片集成度的提升。

   为此,国家纳米科学中心研究员戴庆研究团队提出利用范德华材料极化激元压缩光波,并在纳米尺度上对光进行操控,有望为光电互联提供新的方案。近日,该团队与合作者在石墨烯/α相氧化钼异质结拓扑极化激元方面取得最新进展。相关研究成果发表在《自然—纳米技术》,同期发表评述文章进一步报道。

   他们突破了传统静电掺杂和液体化学掺杂技术难以兼顾载流子迁移率和浓度的瓶颈,发展了兼具高迁移率和高浓度的气相化学掺杂技术,实现了石墨烯费米能级从0到0.7 eV超宽范围调制。在此基础上,结合理论设计,实现了石墨烯/α相氧化钼异质结中极化激元等频色散轮廓从开口到闭合的原位、动态、可逆拓扑转变,打破了声子极化激元传输受支撑材料晶向的限制,为片内动态调制极化激元传播方向提供了新路径。

   论文通讯作者之一戴庆说:打个比方,我们的研究相当于给受限于过独木桥的光波搭建了四通八达的道路,允许它们在各个方向传输。

   研究团队进一步通过基底介电环境设计,构造了宽度仅有1.5μm 的二氧化硅平面透镜,实现了极化激元椭圆传播模式的纳米聚焦。不仅将入射光的波长压缩至原来的4.8%,同时能量增强4.5倍。

   韩国科学技术高等研究院教授Min Seok Jang在同期发表的新闻和评述文章里评价:该工作突破了传统声子极化波受限于晶格结构而难以调控的难题,为极化波解锁了重要的调控功能,对将来实现纳米成像、光学传感和纳米级能量操纵等应用意义重大。

   据了解,戴庆团队瞄准高性能光电芯片的国家战略需求,近十年来专注探索利用新型纳米材料极化激元实现片上光电互联的新路径,他们与国内外学者联合攻关,近年来取得系列原创性成果,包括迄今为止室温下石墨烯等离激元的最高传输记录、最高波长压缩比的声子极化激元和兼具行波与消逝波特征的表面声子极化激元幽灵模式等。这些研究基础为进一步实现操控电磁波的定向传播和能量汇聚提供了新的途径,也为面向光电互联的亚波长纳米光学器件提供了新的设计思路。(来源:中国科学报高雅丽)

  

相关论文信息:https://doi.org/10.1038/s41565-022-01185-2

   版权声明:凡本网注明来源:中国科学报、科学网、科学新闻杂志的所有作品,网站转载,请在正文上方注明来源和作者,且不得对内容作实质性改动;微信公众号、头条号等新媒体平台,转载请联系授权。邮箱:shouquan@stimes.cn。
作者:戴庆等 来源:《自然—纳米技术》

分类标签: 纳米 尺度

声明:本文转载仅出于学习和传播信息所需,并不意味着代表本站观点或证实其内容的真实性;其他网站或个人转载使用须保留本站所注“来源”,并自负相关法律责任;如作者不希望被转载或其他事宜,请及时联系我们!

相关文章