中文摘要
纳米递药系统在肿瘤的诊断和治疗方面具有广阔前景,但其抗肿瘤效果并未得到突破性提高。究其原因,一方面是肿瘤细胞易通过淋巴系统扩散,而传统纳米递药系统很难通过在淋巴系统的有效蓄积阻止肿瘤转移;另一方面是纳米递药系统难以同时实现在原位瘤深部治疗盲区的高效“渗透”和长效“滞留”。本项目拟制备表面修饰点击化学反应官能团及靶向肽TR的小粒径胶束,同时包载光热剂吲哚菁绿和化疗药物阿霉素。该系统首先依托小粒径胶束更易蓄积在淋巴结部位以治疗转移瘤;同时通过肿瘤部位EPR效应和TR肽的主动靶向性高效渗透至肿瘤深部,再给予近红外激光照射,使肿瘤局部温度升高,促进肿瘤细胞凋亡,并催化表面官能团快速进行点击化学反应,使胶束聚合,粒径增大,更加长效地滞留于肿瘤组织。简言之,本项目所构建的光热催化的粒径可变纳米递药系统能够同时实现药物的淋巴系统传递、肿瘤深部递送和有效滞留,从而发挥光热治疗和化疗的最优协同作用。
英文摘要
Nano-drug delivery systems were widely used in the diagnosis and treatment of cancer. However, the anti-tumor effect has not been improved significantly. On the one hand, tumor cells were easily spread through the lymphatic system, and the traditional nano-delivery systems were difficult to effectively accumulate in the lymphatic system to prevent tumor metastasis. On the other hand, the nano-delivery systems were hardly to reach to the deep tumor to achieve efficient "penetration" and long-term "retention" simultaneously. In order to effectively cure the tumor, we intended to establish a small particle size micelle modified with functional groups for click chemical reaction and tumor targeting peptide TR, containing both the photothermal agent indocyanine green and chemotherapeutic drug doxorubicin. This drug delivery system could not only accumulate in the lymph nodes to treat the metastatic tumor due to the small particle size, but also penetrate into the deep tumor through the EPR effect and the active targeting of the TR peptide. After that, the near infrared laser irradiation was given and the local temperature increased, which could cause cell apoptosis and catalyze the rapid reaction of click chemical functional groups on the surface of micelle, leading to the polymerization of micelle and retention in the tumor tissue. In short, the photothermal catalyzed nano drug delivery system could realize the lymphatic system delivery, tumor deep delivery and effective retention, to exert optimal synergistic effect of photothermal therapy and chemotherapy.
