中文摘要
光动力治疗是目前癌症治疗普遍采用的有效方法,纳米药物载体是增强其疗效的有力工具。然而,传统纳米药物载体与光敏剂的功能往往相互独立,不能协同作用,本项目旨在发展一种能有效提高光敏剂单线态氧产率的载体---可控“光活性”纳米药物载体。该载体的构建从外部重原子效应影响光敏剂单线态氧产率的关键点出发,以石墨烯量子点为平台,采取改变其表面碘原子的数量以及聚乙二醇修饰基团的数量及构型的方法,实现对光敏剂与重原子的距离、相对空间位置等因素的技术调控,从而达到对该“光活性”纳米药物载体的“光活性”调节的目的。同时,本项目以荷肺癌小鼠为医学模型,研究该可控“光活性”纳米药物载体的PDT疗效。本项目的实施,不仅能为众多光敏剂在癌症等疾病的光动力治疗中提供有效的 “光活性”纳米药物载体,而且为解决传统纳米药物载体与光敏剂的功能不能协同作用性难题提供一种新的思路,为研制出新型“光活性”纳米药物奠定理论和技术基础。
英文摘要
Photodynamic therapy is currently an effective method that is widely used in the treatment of cancer. Nano-drug carrier is a powerful tool to enhance the curative effect. However, the function of traditional nano-drug carrier and photosensitizer is often independent of each other. In this project, we want to develop a controllable "optically active" nano-drug carrier which can improve the rate of singlet oxygen production effectively from the view of the key point that affects the rate of singlet oxygen production by external heavy atom effect. The controllable "optically active" nano-drug carrier is based on graphene quantum dots, on which functional groups, such as iodine and polyethylene glycol are introduced. The regulation of the "optical activity" is realized by changing the number and configuration of the functional groups which can regulate the distance and relative spatial location between the photosensitizser and the heavy atom. The curative effect of this controllable "optically active" nano-drug carrier is studied by using lung cancer-burdened mice as research model. The implementation of this project, could not only provide an effective "optically active" platform for all the photosensitizers used in photodynamic therapy, but also have important theoretical significance in the construction of "optically active" nano-drug carrier.
结题摘要
光动力治疗是目前癌症治疗普遍采用的有效方法,纳米药物载体是增强其疗效的有力工具。然而,传统纳米药物载体与光敏剂的功能往往相互独立,不能协同作用,本项目旨在发展一种能有效提高光敏剂光动力疗效的载体---可控“光活性”纳米药物载体。本项目不仅通过石墨烯量子点表面重原子的引入,极大的提高了光敏剂的单线态氧产率,而且基于石墨烯量子点的淬灭效应,发展的先淬灭再激活的新思路,可有效提高光敏剂的靶向选择性以及实现光敏剂的特异性激活。本项目的实施,不仅能为众多光敏剂在癌症等疾病的光动力治疗中提供有效的 “光活性”纳米药物载体,而且为解决传统纳米药物载体与光敏剂的功能不能协同作用性难题提供一种新的思路,为研制出新型“光活性”纳米药物奠定理论和技术基础。
