当医学影像遇上深度学习
在传统医疗领域,医院内每日的医学影像数据量巨大,影像科医生做着大量重复性和机械性的工作。每张片子都需要医生仔细筛查和甄别,耗费了大量的精力,同时过于机械和重复性的工作也使得医生可能由于过于疲乏而产生判断上的失误。近年来,随着深度学习的发展,医学影像逐渐成为人工智能最有潜力的落地领域之一。在这里我们将对医学影像遇上深度学习后的当前行业应用进行介绍和分析,希望能够帮助对人工智能在医学影像上的研究和应用感兴趣的同学们更好地了解行业的现状和发展方向。...
在传统医疗领域,医院内每日的医学影像数据量巨大,影像科医生做着大量重复性和机械性的工作。每张片子都需要医生仔细筛查和甄别,耗费了大量的精力,同时过于机械和重复性的工作也使得医生可能由于过于疲乏而产生判断上的失误。近年来,随着深度学习的发展,医学影像逐渐成为人工智能最有潜力的落地领域之一。在这里我们将对医学影像遇上深度学习后的当前行业应用进行介绍和分析,希望能够帮助对人工智能在医学影像上的研究和应用感兴趣的同学们更好地了解行业的现状和发展方向。...
AUDT杂志最近发表论文基于超声影像的病灶分割的深度学习模型。《Deep Learning Modelsfor Segmentation of Lesion Based on Ultrasound Images》展示了人工智能在超声领域的最新研究成果。本文截取其片段,以飨读者。 ...
化学所发展基于深度学习的蛋白质单分子分析新方法。蛋白质是生命活动的物质基础和主要承担者,许多重要的蛋白质以复合物或多聚体形式参与信号转导、离子转运、免疫响应等众多生理过程,蛋白质的化学计量组成与其生物功能的调控及多种疾病的发生发展密切相关。...
《自然—医学》在线发表的两项独立研究显示,最新的深度学习算法可以基于三维医学影像对神经系统疾病和视网膜疾病给出快速、准确的自动诊断。...
近日,《自然—神经科学》在线发表的一项研究显示,运用一种新型深度学习算法追踪动物运动及行为,其准确度可达到人工水平,而且无需采用追踪标记物或进行费时的手动分析。准确追踪行为发生期间的身体运动部位是运动科学的一项重要内容。但是,如果采用视频记录方式追踪运动,研究人员要么需要费时费力地标记每一帧,要么需要在研究对象身体的预定点上放置标记物。标记物可能会干扰研究目标的行为,而且一般只适合有限类型的运动。...
自然语言处理是人工智能的一个重要方向,研究让计算机使用人类语言、即自然语言的理论和方法。深度学习是指基于深度神经网络的机器学习技术。目前深度学习已成功应用于自然语言处理并取得了重大进展。...
英国《自然·医学》杂志在线发表的两项独立研究显示,最新的人工智能(AI)已可以基于三维医学影像,对神经系统疾病和视网膜疾病给出快速、准确的自动诊断。这意味着深度学习算法已成功应用于三维医学影像的超快分析。深度学习方法已经能识别二维医学影像,实现疾病诊断,但其对复杂详细的三维影像的识别效果尚不明朗。...
传统的集成方法是集成几种不同的模型,再用相同的输入对模型进行预测,然后使用某种平均方法来确定集成模型的最终预测。平均方法 ( averaging )可以采用简单的投票方法 ( voting ) ,平均法或甚至使用集成模型中的一个模型去学习并预测输入的正确值或标签。...