手机版 下载桌面 设为首页

什么是贝叶斯方法?

什么是贝叶斯方法?贝叶斯观点认为,概率是一个人对于一个事件发生的信心,即认为一个事件有多大的可能性会发生。如果认为一定会发生,概率就是1;认为一定不会发生,概率就是0;有可能发生,概率就介于0-1之间。这种概率会随着观测数据的变化而变化。一开始我们没有数据,只能根据原有经验猜测一个大概的概率,称为先验概率。...

科学家利用机器学习让耐药检测更高效

科学家利用机器学习让耐药检测更高效。细菌耐药已成为影响全人类健康的重大问题,引起了全世界广泛的关注。世界卫生组织提出的解决耐药措施之一是研发耐药快速准确的新型诊断技术和相关试剂。传统的检测方法基于细菌培养,周期长,易导致漏诊、误诊,延误最佳治疗时机。...

如何使用交叉验证(Cross Validation)?

如何使用交叉验证(Cross Validation)?在机器学习的相关研究中,如果是有监督的算法,需要将原始数据集分为训练集和测试集两个集合。训练集中的数据带有标签,用这些数据来训练出一个模型,告诉机器什么样的数据可以分成哪一类,然后用这个模型来预测测试集中数据的标签。然后用预测得到的标签跟真实的标签作比对,就可以得到这个模型的预测准确率,其实是考察这个模型的generalization ability(泛化能力),即,从训练集中总结出来的规律能不能用到别的数据上去。...

机器学习的认知模式

人工智能的研究也走过从模仿感性辨识到理性演绎的道路。它在上世纪50年代,研究模拟动物应用经验方式的感知器(Perceptron),对输入数据学习分类实现联想推测。到了70年代,转轨到直接模仿人类的理性思维,以谓词逻辑进行运算和启发式搜索,根据科学知识资料作答。...

机器学习技术或可解决量子信息难题

记者从上海交通大学获悉,该校教授金贤敏团队与南方科技大学教授翁文康合作,首次将机器学习技术应用于解决量子信息难题,实现了基于人工神经网络的量子态分类器。这一重要研究成果已发表于《物理评论快报》。...